_thesis references

_introduction : intro state of the art

Albano, Lin, Blaauw, Sylvester, Wise et Sastry, 2008, A Fully Integrated Microbattery for an Implantable Microelectromechanical System, Journal of Power Sources 185 (2): 1524-32 [doi:10.1016/j.jpowsour.2008.08.061]

Amendola, 2017, Halogen-based electrolyte containing carbon, WO2017142990A1

Argue et Owens, 1969, Solid state electrochemical devices, US3443997A

Armutlulu, Fang, Kim, Ji, Bidstrup et Allen, 2011, A MEMS-enabled 3D zinc–air microbattery with improved discharge characteristics based on a multilayer metallic substructure, Journal of Micromechanics and Microengineering 21 (10): 104011 [doi:10.1088/0960-1317/21/10/104011}

Baggetto, Knoops, Niessen, Kessels et Notten, 2010, 3D Negative Electrode Stacks for Integrated All-Solid-State Lithium-Ion Microbatteries, Journal of Materials Chemistry 20 (18): 3703 [doi:10.1039/b926044g] (baggetto2010_2)

Baggetto, Niessen, Roozeboom et Notten, 2008, High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration, Advanced Functional Materials 18 (7): 1057-66 [doi:10.1002/adfm.200701245]

Beeby et White, 2010, Energy Harvesting for Autonomous Systems, Artech House Series Smart Materials, Structures, and Systems [ISBN:978-1-59693-718-5]

Cardenas-Valencia, Challa, Fries, Langebrake, Benson et Bhansali, 2003, A micro-fluidic galvanic cell as an on-chip power source, Selected Papers from Eurosensors XVI 95 (1): 406-13 [doi:10.1016/S0925-4005(03)00446-5]

Chamran, Min, Dunn et Kim, 2006, Three-Dimensional Nickel-Zinc Microbatteries, MEMS 2006, 950-53, IEEE [doi:10.1109/MEMSYS.2006.1627958]

Chamran, Min, Dunn et Kim, 2007, Zinc-air microbattery with electrode array of zinc microposts, MEMS 2007, 871-74, IEEE [doi:10.1109/MEMSYS.2007.4433097]

Cheiky, Danczyk et Scheffler, 1991, Urban and suburban drive cycle test results of a zinc-air powered vehicle, In Proceedings of the Sixth Annual Battery Conference on Applications and Advances, 29-36 [doi:10.1109/BCAA.1991.761457]

Cohn, Altberg, Macdonald et Ein-Eli, 2011, A Silicon–air Battery Utilizing a Composite Polymer Electrolyte, Electrochimica Acta 58 (déc.): 161-64 [doi:10.1016/j.electacta.2011.09.026]

Cohn, Starosvetsky, Hagiwara, Macdonald et Ein-Eli, 2009, Silicon–air Batteries, Electrochemistry Communications 11 (10): 1916-18 [doi:10.1016/j.elecom.2009.08.015]

Cook, 1991, Electric car showdonw in Phoenix, Zinc-Air battery wins, Popular Science, juillet 1991 [url:https://books.google.fr/books?id=MFHLut0E2y8C&lpg=PA64&dq=zinc%20air%20battery&hl=fr&pg=PA64#v=onepage&q=zinc&f=false]

Dunn, Long et Rolison, 2008, Rethinking multifunction in three dimensions for miniaturizing electrical energy storage, The Electrochemical Society Interface 17 (3): 49

Eustache, Tilmant, Morgenroth, Roussel, Patriarche, Troadec, Rolland, Brousse et Lethien, 2014, Silicon-Microtube Scaffold Decorated with Anatase TiO2 as a Negative Electrode for a 3D Litium-Ion Microbattery, Advanced Energy Materials 4 (8): 1301612 [doi:10.1002/aenm.201301612]

Fondation MacArthur, 2015, Intelligent Assets Unlocking the Circular Economy Potential, World Economic Forum [url:http://www3.weforum.org/docs/WEF_Intelligent_Assets_Unlocking_the_Cricular_Economy.pdf]

Fotouhi, Ogier, Kim, Kim, Cao, Shen, Kramlich et Chung, 2016, A low cost, disposable cable-shaped Al–air battery for portable biosensors, Journal of Micromechanics and Microengineering 26 (5): 055011 [doi:10.1088/0960-1317/26/5/055011]

Fu, Luo, Huber et Lu, 2006, Design and Fabrication of a Micro Zinc/Air Battery, Journal of Physics, Conference Series 34 (1): 800 [doi:10.1088/1742-6596/34/1/132]

Gepner, Puech et Venet, 2012, Communication Method, Transmitter/Receiver Node, and Related Computer Program, FR2952500

Gerasopoulos, Pomerantseva, McCarthy, Brown, Wang, Culver et Ghodssi, 2012, Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining, ACS Nano 6 (7): 6422-32 [doi:10.1021/nn301981p]

Gu, Zheng, Zhao, Xiao, Xue et Pang, 2017, Rechargeable Zinc–air Batteries: A Promising Way to Green Energy, J. Mater. Chem. A 5 (17): 7651-66 [doi:10.1039/C7TA01693J]

Hahn, Hoppner, Marquardt, Eisenreich, Ferch, Wilke et Lang, 2012, Development of Rechargeable Micro Batteries Based on Micro Channel Structures, 2012 IEEE International Conference on Green Computing and Communications, Besancon, pp. 619-623 [doi:10.1109/GreenCom.2012.96]

Hahn, Wagner, Schmitz et Reichl, 2004, Development of a Planar Micro Fuel Cell with Thin Film and Micro Patterning Technologies, Journal of Power Sources 131 (1-2): 73-78 [doi:10.1016/j.jpowsour.2004.01.015]

Hamon, 1881, Générateurs Electriques, Les Piles, La Science Populaire, 27 octobre 1881 [url:http://gallica.bnf.fr/ark:/12148/bpt6k5419325w]

Hart, White, Dunn et Rolison, 2003, 3-D Microbatteries, Electrochemistry Communications 5 (2): 120-23 [doi:10.1016/S1388-2481(02)00556-8]

Ho, Evans et Wright, 2010, Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte, Journal of Micromechanics and Microengineering 20 (10): 104009 [doi:10.1088/0960-1317/20/10/104009]

Hu, Wu, Gao, Cao, Li, McDough, Xie, Zhou et Cui, 2011, Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity, Advanced Energy Materials 1 (4): 523-27 [doi:10.1002/aenm.201100056]

Humble, Harb et LaFollette, 2001, Microscopic Nickel-Zinc Batteries for Use in Autonomous Microsystems, Journal of The Electrochemical Society 148 (12): A1357 [doi:10.1149/1.1417975]

Kahn, Katz et Pister, 1999, Next Century Challenges: Mobile Networking for “Smart Dust”, Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, 271-78, ACM Press [doi:10.1145/313451.313558]

Kamitani, Morishita, Kotaki et Arscott, 2008, Miniaturized microDMFC using silicon microsystems techniques: performances at low fuel flow rates, Journal of Micromechanics and Microengineering 18 (12): 125019 [doi:10.1088/0960-1317/18/12/125019]

Kanehori, Matsumoto, Miyauchi et Kudo, 1983, Thin Film Solid Electrolyte and Its Application to Secondary Lithium Cell, Solid State Ionics 9-10 (déc): 1445-48 [doi:10.1016/0167-2738(83)90192-3]

Kim, Lee, Foo, Pannuto, Kuo, Kempke, Ghaed, Bang, Lee, Kim, Jeong, Dutta, Sylvester et Blaauw, 2014, A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting, 2014 Symposium on VLSI Circuits Digest of Technical Papers [doi:10.1109/VLSIC.2014.6858425], 1-2

Kompis et Aliwell, 2008, Energy Harvesting Technologies to enable remote and wireless sensing, Knowlegde Transfer Network [url:https://connect.innovateuk.org/documents/3176926/3726993/Energy+Harvesting+Technologies+to+Enable+Remote+and+Wireless+Sensing.pdf/6445e5e6-3807-4a5f-b5ca-147f789a340e]

Kotobuki, Suzuki, Munakata, Kanamura, Sato, Yamamoto et Yoshida, 2010, Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process, Journal of The Electrochemical Society 157 (4): A493 [doi:10.1149/1.3308459]

Kötz et Carlen, 2000, Principles and Applications of Electrochemical Capacitors, Electrochimica Acta 45 (15-16): 2483-98 [doi:10.1016/S0013-4686(00)00354-6]

Kumar, Williams et Subramanian, 2017, Development of a Printed Cathode and Catalyst Layer for Printed Zinc-Air Batteries, Meeting Abstracts ECS 232th edition, 581-581

Lee, Kim, Cao, Choi, Liu, Lee et Cho, 2011, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air, Advanced Energy Materials 1 (1): 34-50 [doi:10.1002/aenm.201000010]

Létiche, Eustache, Freixas, Demortière, De Andrade, Morgenroth, Tilmant, Vaurette, Troadec, Roussel, Brousse et Lethien, 2016, Atomic Layer Deposition of Functional Layers for on Chip 3D Li-Ion All Solid State Microbattery, Advanced Energy Materials 7 (2): 1601402 [doi:10.1002/aenm.201601402]

Levasseur, Menetrier, Dormoy et Meunier, 1989, Solid State Microbatteries, Materials Science and Engineering: B 3 (1-2): 5-12 [doi:10.1016/0921-5107(89)90171-2]

Li et Dai, 2014, Recent Advances in Zinc–air Batteries, Chem. Soc. Rev. 43 (15): 5257-75 [doi:10.1039/C4CS00015C] (li2014_2)

Liang et Bro, 1969, A High-Voltage, Solid-State Battery System I. Design Considerations, Journal of The Electrochemical Society 116 (9): 1322-23 [doi:10.1149/1.2412312]

Liang, Epstein et Boyle, 1969, A High-Voltage, Solid-State Battery System II. Fabrication of Thin-Film Cells, Journal of The Electrochemical Society 116 (10): 1452-54 [doi:10.1149/1.2411560] (liang1969_2)

Linden et Reddy, 2002, Handbook of batteries, McGraw-Hill [ISBN:978-0-07-135978-8]

Long, Dunn, Rolison et White, 2004, Three-Dimensional Battery Architectures, Chemical Reviews 104 (10): 4463-92 [doi:10.1021/cr020740l]

Long et Rolison, 2007, Architectural Design, Interior Decoration, and Three-Dimensional Plumbing En Route to Multifunctional Nanoarchitectures, Accounts of Chemical Research 40 (9): 854-62 [doi:10.1021/ar6000445]

Moore, 1975, Progress in digital integrated electronics, Technical digest, international electronic devices meeting, pp 11-13, IEEE [url:http://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf]

Nathan, Golodnitsky, Yufit, Strauss, Ripenbein, Shechtman, Menkin et Peled, 2005, Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS, Journal of Microelectromechanical Systems 14 (5): 879-85 [doi:10.1109/JMEMS.2005.851860]

Neburchilov et Zhang, 2017, Metal-air and metal-sulfur batteries: fundamentals and applications, Electrochemical energy storage and conversion, Taylor & Francis [ISBN:978-1-4822-5853-0]

Oukassi, Giroud-Garampon, Poncet et Salot, 2017, Ultra-Thin Rechargeable Lithium Ion Batteries on Flexible Polymer: Design, Low Temperature Fabrication and Characterization, Journal of The Electrochemical Society 164 (9): A1785-91 [doi:10.1149/2.0281709jes]

Pannuto, Lee, Kuo, Foo, Kempke, Kim, Dreslinski, Blaauw et Dutta, 2015, MBus: An Ultra-Low Power Interconnect Bus for next Generation Nanopower Systems, Proceedings of the 42nd Annual International Symposium on Computer Architecture, 629-41. ACM Press [doi:10.1145/2749469.2750376]

Park, Park, Nam, Lee et Cho, 2015, All-Solid-State Cable-Type Flexible Zinc–Air Battery, Advanced Materials 27 (8): 1396–1401 [doi:10.1002/adma.201404639]

Piqué, Arnold, Kim, Ollinger et Sutto, 2004, Rapid Prototyping of Micropower Sources by Laser Direct-Write, Applied Physics A 79 (4-6): 783-86 [doi:10.1007/s00339-004-2586-1]

Rhodes, Long et Rolison, 2005, Direct Electrodeposition of Nanoscale Solid Polymer Electrolytes via Electropolymerization of Sulfonated Phenols, Electrochemical and Solid-State Letters 8 (11):A579 [doi:10.1149/1.2050508]

Rolison, Long, Lytle, Fischer, Rhodes, McEvoy, Bourg et Lubers, 2009, Multifunctional 3D Nanoarchitectures for Energy Storage and Conversion, Chemical Society Reviews 38 (1): 226-52 [doi:10.1039/B801151F]

Ruzmetov, Oleshko, Haney, Lezec, Karki, Baloch, Agrawal Davydov, Krylyuk, Liu, Huang, Tanase, Cumings et Talin, 2012, Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries, Nano Letters 12 (1): 505-11 [doi:10.1021/nl204047z]

Saputra, Othman, Ani, Sutjipto et Muhida, 2011, High Energy Density Zinc–air Microbattery Utilising Inorganic MCM-41 Membrane, Materials Research Innovations 15 (2): s114-17 [doi:10.1179/143307511X13031890748326]

Schröder, 2016, Analysis of Reaction and Transport Processes in Zinc Air Batteries, Fakultät für Maschinenbau [ISBN:978-3-658-12290-4]

Seok, Hanson, Lin, Foo, Kim, Lee, Liu, Sylvester et Blaauw, 2008, The Phoenix Processor: A 30pW platform for sensor applications, 2008 IEEE Symposium on VLSI Circuits, 188-89 [doi:10.1109/VLSIC.2008.4586001]

Smalley, 2005, Future Global Energy Prosperity: The Terawatt Challenge, MRS Bulletin 30 (06): 412-17 [doi:10.1557/mrs2005.124]

Sun, Wei, Ahn, Seo, Dillon et Lewis, 2013, 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Advanced Materials 25 (33): 4539-43 [doi:10.1002/adma.201301036]

Talla, Kellogg, Gollakota et Smith, 2017, Battery-Free Cellphone, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1 (2): 1-20 [doi:10.1145/3090090]

Van Noorden, 2014, The rechargeable revolution: A better battery, Nature 507 (7490): 26-28 [doi:10.1038/507026a]

Walker, Wilkins et Lones, 1894, Primary Battery, US 524229

Xia, Chen, Zhu, Liao, An, Wang, He et Jiao, 2016, A Micro Photocatalytic Fuel Cell with an Air-Breathing, Membraneless and Monolithic Design, Science Bulletin 61 (21): 1699-1710 [doi:10.1007/s11434-016-1178-8]

Yue, Yu, Yin, Wong, Zang, Li et Kang, 2013, Fabrication of 3D Hexagonal Bottle-like Si–SnO2 Core–shell Nanorod Arrays as Anode Material in on Chip Micro-Lithium-Ion-Batteries, Journal of Materials Chemistry A 1 (27): 7896 [doi:10.1039/c3ta10601b]

_microtechnologies for higher specific area and air cathode

Bean, 1978, Anisotropic etching of silicon, IEEE Transactions on Electron Devices 25 (10): 1185-93 [doi:10.1109/T-ED.1978.19250]

Coburn et Winters, 1979, Plasma etching—A discussion of mechanisms, Journal of Vacuum Science and Technology 16 (2): 391-403 [doi:10.1116/1.569958]

Eustache, 2016, Microsystèmes de stockage de l’énergie sur substrat 3D, Université de Nantes

Eustache, Douard, Retoux, Lethien et Brousse, 2015, MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes, Advanced Energy Materials 5 (18): 1500680 [doi:10.1002/aenm.201500680]

Eustache, Tilmant, Morgenroth, Roussel, Patriarche, Troadec, Rolland, Brousse et Lethien, 2014, Silicon-Microtube Scaffold Decorated with Anatase TiO2 as a Negative Electrode for a 3D Litium-Ion Microbattery, Advanced Energy Materials 4 (8): 1301612 [doi:10.1002/aenm.201301612]

Hynes, Ashraf, Bhardwaj, Hopkins, Johnston et Shepherd, 1999, Recent Advances in Silicon Etching for MEMS Using the ASETM Process, Sensors and Actuators A: Physical 74 (1-3): 13-17 [doi:10.1016/S0924-4247(98)00326-4]

Kleimann, Linnros et Juhasz, 2001, Formation of three-dimensional microstructures by electrochemical etching of silicon, Applied Physics Letters 79 (11): 1727-29 [doi:10.1063/1.1401792]

Kleimann, Linnros et Petersson, 2000, Formation of wide and deep pores in silicon by electrochemical etching, Materials Science and Engineering: B 69-70 (jan.): 29-33 [doi:10.1016/S0921-5107(99)00260-3]

Laermer et Schilp, 1996, Method of anisotropically etching silicon, US5501893

Laermer et Schilp, 2003, Method of anisotropic etching of silicon, US6531068

Lehmann et Föll, 1990, Formation Mechanism and Properties of Electrochemically Etched Trenches in N-Type Silicon, Journal of The Electrochemical Society 137 (2): 653-59 [doi:10.1149/1.2086525]

Leopold, Kremin, Ulbrich, Krischok et Hoffmann, 2011, Formation of silicon grass: nanomasking by carbon clusters in cyclic deep reactive ion etching, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29 (1): 011002 [doi:10.1116/1.3521490]

Lethien, Tilmant, Eustache, Rolland et Brousse, 2017, Substrat microstructure, EP3055249B1

Létiche, Eustache, Freixas, Demortière, De Andrade, Morgenroth, Tilmant, Vaurette, Troadec, Roussel, Brousse et Lethien, 2016, Atomic Layer Deposition of Functional Layers for on Chip 3D Li-Ion All Solid State Microbattery, Advanced Energy Materials 7 (2): 1601402 [doi:10.1002/aenm.201601402]

Sainiemi, 2009, Cryogenic deep reactive ion etching of silicon micro and nanostructures, Aalto University [url:https://aaltodoc.aalto.fi/handle/123456789/4606]

Summanwar, 2009, Gravure profonde du silicium par procédés plasma de haute densité, ESIEE [url:https://perso.esiee.fr/~research/documents/Master_recherche_et_theses/Doctorants/Affiche_these_HDR/SUMMANWAR.pdf]

_anode materials

Arico, Robert, Brousse, Ouendi, Douard, Daffos, Taberna, Roussel, Le Bideau, Simon, Brousse et Lethien, 2017, Thin Film Electrodes for Fast Electrochemical Micro-Supercapacitors, Meeting Abstracts MA2017-02 (7): 614-614 [url:http://ma.ecsdl.org/content/MA2017-02/7/614]

Chandrasekar et Pushpavanam, 2008, Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications, Electrochimica Acta 53 (8): 3313-22 [doi:10.1016/j.electacta.2007.11.054]

Drnec, Bizzotto, Carlà, Fiala, Sode, Balmes, Detlefs, Dufrane et Felici, 2015, An In-Situ X-Ray Diffraction Study on the Electrochemical Formation of PtZn Alloys on Pt(111) Single Crystal Electrode, Applied Surface Science 354, 443-49 [doi:10.1016/j.apsusc.2015.04.072]

Eustache, 2016, Microsystèmes de stockage de l’énergie sur substrat 3D, Université de Nantes

Eustache, Douard, Retoux, Lethien et Brousse, 2015, MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes, Advanced Energy Materials 5 (18): 1500680 [doi:10.1002/aenm.201500680]

Eustache, Tilmant, Morgenroth, Roussel, Patriarche, Troadec, Rolland, Brousse et Lethien, 2014, Silicon-Microtube Scaffold Decorated with Anatase TiO2 as a Negative Electrode for a 3D Litium-Ion Microbattery, Advanced Energy Materials 4 (8), 1301612 [doi:10.1002/aenm.201301612]

Formaro et Trasatti, 1967, On some debated aspects of the capacitance/potential curves for platinum, Electrochimica Acta 12 (10), 1457-69 [doi:10.1016/0013-4686(67)80059-8]

Libera, Elam et Pellin, 2008, Conformal ZnO coatings on high surface area silica gel using atomic layer deposition, Thin Solid Films 516 (18), 6158-66 [doi:10.1016/j.tsf.2007.11.044]

Miikkulainen, Leskelä, Ritala et Puurunen, 2013, Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends, Journal of Applied Physics 113 (2), 021301 [doi:10.1063/1.4757907]

Mouanga, Ricq, Douglade, Douglade et Berçot, 2006, Influence of coumarin on zinc electrodeposition, Surface and Coatings Technology 201 (3): 762-67 [doi:10.1016/j.surfcoat.2005.12.036]

Nguyen, 1998, Électrodéposition par courants pulsés, Techniques de l’ingénieur [url:http://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/traitements-de-surface-des-metaux-en-milieu-aqueux-42359210/electrodeposition-par-courants-pulses-m1627/]

Pearson et Dennis, 1991, Facts and Fiction about Pulse Plating, Transactions of the IMF 69 (3): 75-79 [doi:10.1080/00202967.1991.11870897]

Schlesinger, Mordechay, 2004, Electroplating, Editions John Wiley & Sons [ISBN:0-471-23896-1]

Shang, Sun, Zhou, et Guan, 2007, Controlled synthesis of various morphologies of nanostructured zinc oxide: flower, nanoplate, and urchin, Crystal Research and Technology 42 (10): 1002–1006 [doi:10.1002/crat.200710959]

Sode, Li, Yang, Wong, Gyenge, Mitchell et Bizzotto, 2006, Electrochemical Formation of a Pt/Zn Alloy and Its Use as a Catalyst for Oxygen Reduction Reaction in Fuel Cells, The Journal of Physical Chemistry B 110 (17): 8715-22 [doi:10.1021/jp055350s]

Uhlig, MacNairn et Vaughn, 1955, Formation of the intermetallic compound PtZn at room temperature, Acta Metallurgica 3 (3): 302-4 [doi:10.1016/0001-6160(55)90075-4]

Williams, Gupta et Wasilik, 2003, Etch Rates for Micromachining Processing-Part II, Journal of Microelectromechanical Systems 12 (6): 761-78 [doi:10.1109/JMEMS.2003.820936]

Winand, 2010, Electrodeposition of Zinc and Zinc Alloys, In Modern Electroplating, 285–307, Editions John Wiley & Sons [ISBN:978-0-470-60263-8]

_cathode materials

Bernard, Hugot-Le Goff, Thi et Cordoba de Torresi, 1993, Electrochromic Reactions in Manganese Oxides I. Raman Analysis, Journal of The Electrochemical Society 140 (11): 3065-70 [doi:10.1149/1.2220986]

Blizanac, Ross et Markovic, 2007, Oxygen electroreduction on Ag(111): The pH effect, Electrochimica Acta, Selection of papers from the Third Gerischer Symposium Berlin, Germany, 6-8 July 2005, 52 (6): 2264-71 [doi:10.1016/j.electacta.2006.06.047]

Cheng et Chen, 2012, Metal–air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts, Chemical Society Reviews 41 (6): 2172 [doi:10.1039/c1cs15228a]

Débart, Bao, Armstrong et Bruce, 2007, An O2 Cathode for Rechargeable Lithium Batteries: The Effect of a Catalyst, Journal of Power Sources 174 (2): 1177-82 [doi:10.1016/j.jpowsour.2007.06.180]

El-Deab et Ohsaka, 2006, Manganese Oxide Nanoparticles Electrodeposited on Platinum Are Superior to Platinum for Oxygen Reduction, Angewandte Chemie International Edition 45 (36): 5963-66 [doi:10.1002/anie.200600692]

Eustache, Douard, Retoux, Lethien et Brousse, 2015, MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes, Advanced Energy Materials 5 (18): 1500680 [doi:10.1002/aenm.201500680]

Goh, Liu, Ge, Zong, Du et Andy Hor, 2013, Ag Nanoparticle-Modified MnO2 Nanorods Catalyst for Use as an Air Electrode in Zinc–air Battery, Electrochimica Acta 114 (dec.): 598-604 [doi:10.1016/j.electacta.2013.10.116]

Gorlin, Lassalle-Kaiser, Benck, Gul, Webb, Yachandra, Yano et Jaramillo, 2013, In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction, Journal of the American Chemical Society 135 (23): 8525-34 [doi:10.1021/ja3104632]

Julien, Massot, Rangan, Lemal et Guyomard, 2002, Study of structural defects in γ-MnO2 by Raman spectroscopy, Journal of Raman Spectroscopy 33 (4): 223-28 [doi:10.1002/jrs.838]

Kim, Lee et Sun, 2010, Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction, Journal of the American Chemical Society 132 (14): 4996-97 [doi:10.1021/ja1009629]

Kundu, Black, Adams, Harrison, Zavadil et Nazar, 2015, Nanostructured Metal Carbides for Aprotic Li–O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability, The Journal of Physical Chemistry Letters 6 (12): 2252-58 [doi:10.1021/acs.jpclett.5b00721]

Li, Gong, Liang, Feng, Kim, Wang, Hong, Zhang et Dai, 2013, Advanced zinc-air batteries based on highperformance hybrid electrocatalysts, Nature Communications 4 (mai): 1805 [doi:10.1038/ncomms2812]

Liu, Park, Kim, Gupta, Wang, Wu et Cho, 2016, High-Performance Non-Spinel Cobalt–manganese Mixed Oxide-Based Bifunctional Electrocatalysts for Rechargeable Zinc–air Batteries, Nano Energy 20 (fév.): 315-25 [doi:10.1016/j.nanoen.2015.11.030]

Luntz et McCloskey, 2014, Nonaqueous Li–Air Batteries: A Status Report, Chemical Reviews 114 (23):11721-50 [doi:10.1021/cr500054y]

Luo, Wang, Liang, Chen, Liu et Xu, 2017, Manganese Oxide with Different Morphology as Efficient Electrocatalyst for Oxygen Evolution Reaction, International Journal of Hydrogen Energy 42 (10): 7151-57 162 [doi:10.1016/j.ijhydene.2016.04.162]

Mao, Zhang, Sotomura, Nakatsu, Koshiba et Ohsaka, 2003, Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts, Electrochimica Acta 48 (8): 1015-21 [doi:10.1016/S0013-4686(02)00815-0]

Najafpour, Ehrenberg, Wiechen et Kurz, 2010, Calcium Manganese(III) Oxides (CaMn2O4 . xH2O) as Biomimetic Oxygen-Evolving Catalysts, Angewandte Chemie International Edition 49 (12): 2233-37 [doi:10.1002/anie.200906745]

Neburchilov, Wang, Martin et Qu, 2010, A Review on Air Cathodes for Zinc–air Fuel Cells, Journal of Power Sources 195 (5): 1271-91 [doi:10.1016/j.jpowsour.2009.08.100]

Ottakam Thotiyl, Freunberger, Peng, Chen, Liu et Bruce, 2013, A stable cathode for the aprotic Li–O2 battery, Nature Materials 12 (11): 1050-56 [doi:10.1038/nmat3737]

Palmas, Ferrara, Vacca, Mascia et Polcaro, 2007, Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium, Electrochimica Acta, Selection of papers from the 5th International Conference (ECS’06) 10-14 September 2006, Kotor, Montenegro, 53 (2): 400-406 [doi:10.1016/j.electacta.2007.01.085]

Roche, Chaînet, Chatenet et Vondrák, 2007, Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism, The Journal of Physical Chemistry C 111 (3): 1434-43 [doi:10.1021/jp0647986]

Song et Zhang, 2008, Electrocatalytic Oxygen Reduction Reaction, in PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, édité par Jiujun Zhang, 89-134, Springer London [ISBN:978-1-84800-936-3]

Stamenkovic, Mun, Mayrhofer, Ross, Markovic, Rossmeisl, Greeley et Nørskov, 2006, Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure, Angewandte Chemie International Edition 45 (18): 2897-2901 [doi:10.1002/anie.200504386]

Stamenkovic, Vojislav, Fowler, Mun, Wang, Ross, Lucas et Marković, 2007, Improved Oxygen Reduction Activity on Pt3Ni (111) via Increased Surface Site Availability, Science 315 (5811): 493 [doi:10.1126/science.1135941]

Strasser, Koh, Anniyev, Greeley, More, Yu, Liu, Kaya, Nordlund, Ogasawara, Toney et Nilsson, 2010, Lattice-Strain Control of the Activity in Dealloyed Core–shell Fuel Cell Catalysts, Nature Chemistry 2 (6): 454-60 [doi:10.1038/nchem.623]

Wang, Xu, Xu et Zhang, 2014, Oxygen Electrocatalysts in Metal–air Batteries: From Aqueous to Nonaqueous Electrolytes, Chem. Soc. Rev. 43 (22): 7746-86 [doi:10.1039/C3CS60248F]

Xu, Gallant, Wunderlich, Lohmann et Greer, 2015, Three-Dimensional Au Microlattices as Positive Electrodes for Li–O2 Batteries, ACS Nano 9 (6): 5876-83 [doi:10.1021/acsnano.5b00443]

Yeager, 1984, Electrocatalysts for O2 reduction, Electrochimica Acta 29 (11): 1527-37 [doi:10.1016/0013-4686(84)85006-9]

Zhang, Cao, Wang, Yang, Shi et Gu, 2008, Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage, Nano Letters 8 (9): 2664-68 [doi:10.1021/nl800925j}

Zhang, Sasaki, Sutter et Adzic, 2007, Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters, Science 315 (5809): 220-22 [doi:10.1126/science.1134569]

Zhang, Zhao, Xia et Dai, 2015, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nature Nanotechnology 10 (5): 444-52 [doi:10.1038/nnano.2015.48]

Zhang, Wang, Xie et Zhou, 2016, Recent Progress in Rechargeable Alkali Metal–air Batteries, Green Energy & Environment 1 (1): 4-17 [doi:10.1016/j.gee.2016.04.004]

_general conclusion and perspectives

Armutlulu, Fang, Kim, Ji, Bidstrup et Allen, 2011, A MEMS-enabled 3D zinc–air microbattery with improved discharge characteristics based on a multilayer metallic substructure, Journal of Micromechanics and Microengineering 21 (10): 104011 [doi:10.1088/0960-1317/21/10/104011]

Baggetto, Niessen, Roozeboom et Notten, 2008, High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration, Advanced Functional Materials 18 (7): 1057-66 [doi:10.1002/adfm.200701245}

Brachet, Gaboriau, Gentile, Fantini, Bidan, Sadki, Brousse et Le Bideau, 2016, Solder-Reflow Resistant Solid-State Micro-Supercapacitors Based on Ionogels, Journal of Materials Chemistry A 4 (30): 11835-43 [doi:10.1039/C6TA03142K]

Chamran, Min, Dunn et Kim, 2007, Zinc-air microbattery with electrode array of zinc microposts, MEMS 2007, 871-74, IEEE [doi:10.1109/MEMSYS.2007.4433097]

Daoud, Xin, Zhang et Mak, 2006, Pulsed laser deposition of superhydrophobic thin Teflon films on cellulosic fibers, Thin Solid Films, Proceedings of the Eighth International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures and the Thirteenth International Congress on Thin Films, 515 (2): 835-37 [doi:10.1016/j.tsf.2005.12.245]

De Decker, 2009, The monster footprint of digital technology, Low-tech Magazine [url:http://www.lowtechmagazine.com/2009/06/embodied-energy-of-digital-technology.html]

El-Deab et Ohsaka, 2006, Manganese Oxide Nanoparticles Electrodeposited on Platinum Are Superior to Platinum for Oxygen Reduction, Angewandte Chemie International Edition 45 (36): 5963-66

Eustache, Tilmant, Morgenroth, Roussel, Patriarche, Troadec, Rolland, Brousse et Lethien, 2014, Silicon-Microtube Scaffold Decorated with Anatase TiO2 as a Negative Electrode for a 3D Litium-Ion Microbattery, Advanced Energy Materials 4 (8): 1301612 [doi:10.1002/anie.200600692

Fu, Luo, Huber et Lu, 2006, Design and Fabrication of a Micro Zinc/Air Battery, Journal of Physics: Conference Series 34 (1): 800 [doi:10.1088/1742-6596/34/1/132]

Gaines, 2014, The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustainable Materials and Technologies 1-2 (dec.): 2-7 [doi:10.1016/j.susmat.2014.10.001]

Goh, Liu, Hor, Zhang, Ge, Zong, Yu et Khoo, 2014, A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries, Journal of the Electrochemical Society 161 (14): A2080-86 [doi:10.1149/2.0311414jes]

Gutowski, Branham, Dahmus, Jones, Thiriez et Sekulic, 2009, Thermodynamic Analysis of Resources Used in Manufacturing Processes, Environmental Science & Technology 43 (5): 1584-90 [doi:10.1021/es8016655]

Hao, Mu, Jiang, Liu et Zhao, 2017, GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China, Sustainability 9 (4): 504 [doi:10.3390/su9040504]

Harting, Kunz et Turek, 2012, Zinc-Air Batteries: Prospects and Challenges for Future Improvement, Zeitschrift Für Physikalische Chemie 226 (2): 151-66 [doi:10.1524/zpch.2012.0152]

Huguet, 2017, Le déploiement des réseaux communautaires sans fil (MESH). De la nécessité de former à la médiation infrastructurelle, Netcom. Réseaux, communication et territoires, no 31-1/2 (avr.): 33-52 [10.4000/netcom.2612]

Lee, Kim, Cao, Choi, Liu, Lee et Cho, 2011, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air, Advanced Energy Materials 1 (1): 34-50 [doi:10.1002/aenm.201000010]

Li et Dai, 2014, Recent Advances in Zinc–air Batteries, Chem. Soc. Rev. 43 (15): 5257-75 [doi:10.1039/C4CS00015C]

MacFarlane, Tachikawa, Forsyth, Pringle, Howlett, Elliott, Davis, Watanabe, Simon et Austen Angell, 2014, Energy Applications of Ionic Liquids, Energy Environ. Sci. 7 (1): 232-50 [doi:10.1039/C3EE42099J]

Marušić, 2010, The Singapore Statement on Research Integrity, Croatian Medical Journal 51 (5): 381-82 [doi:10.3325/cmj.2010.51.381]

Neburchilov et Zhang, 2017, Metal-air and metal-sulfur batteries: fundamentals and applications, Electrochemical energy storage and conversion, CRC Press, Taylor & Francis Group [ISBN:978-1-4822-5853-0]

Ohno, 2005, Electrochemical aspects of ionic liquids, John Wiley & Sons [ISBN:0-471-76252-0]

Othman, Yahaya et Arof, 2002, Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel, Journal of New Materials for Electrochemical Systems 5 (3): 177-82

Roach, Shirtcliffe et Newton, 2008, Progess in superhydrophobic surface development, Soft Matter 4 (2): 224-40 [doi:10.1039/B712575P]

Roche, Chaînet, Chatenet et Vondrák, 2008, Durability of Carbon-Supported Manganese Oxide Nanoparticles for the Oxygen Reduction Reaction (ORR) in Alkaline Medium, Journal of Applied Electrochemistry 38 (9): 1195-1201 [doi:10.1007/s10800-008-9537-z]

Schmidt, 1998, Wafer-to-wafer bonding for microstructure formation, Proceedings of the IEEE 86 (8): 1575-85 [doi:10.1109/5.704262]

Swartz, Lessig, Bortolotti et Szidon, 2017, Celui qui pourrait changer le monde: Aaron Swartz, écrits, Éditions B42

Szczepankiewicz, Bieron et Kozik, 1995, The “Golden Penny” Demonstration: An Explanation of the Old Experiment and the Rational Design of the New and Simpler Demonstration, Journal of Chemical Education 72 (5): 386 [doi:10.1021/ed072p386]

Tang et Azumi, 2011, Optimization of Pulsed Electrodeposition of Aluminum from AlCl3-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid, Electrochimica Acta 56 (3): 1130-37 [doi:10.1016/j.electacta.2010.10.056]

Wang, Xu, Xu et Zhang, 2014, Oxygen Electrocatalysts in Metal–air Batteries: From Aqueous to Nonaqueous Electrolytes, Chem. Soc. Rev. 43 (22): 7746-86 [doi:10.1039/C3CS60248F]

Xia, Tu, Xiang, Huang, Wang et Zhao, 2010, Hierarchical Porous Cobalt Oxide Array Films Prepared by Electrodeposition through Polystyrene Sphere Template and Their Applications for Lithium Ion Batteries, Journal of Power Sources 195 (7): 2014-22 [doi:10.1016/j.jpowsour.2009.11.009]xia

Yang, Xiao, Li, Ding, Qiang, Tan, Mai, Lin, Wu, Li, Jin, Liu, Zhou, Wong et Wang, 2013, Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems, ACS Nano 7 (3): 2617-26 [doi:10.1021/nn306044d]

_other reads

_anode materials

Alias et Mohamed, 2015, Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries, Journal of King Saud University - Engineering Sciences, 27, 43-48 [doi:10.1016/j.jksues.2013.03.003]

Baik et Fray, 2001, Electrodeposition of zinc from high acid zinc chloride solutions, Journal of Applied Electrochemistry, 31, 1141-1147 [doi:10.1023/A:1012290132379]

Bakkar et Neubert, 2013, Electrodeposition and corrosion characterisation of micro- and nano-crystalline aluminium from AlCl3/1-ethyl-3-methylimidazolium chloride ionic liquid, Electrochimica Acta, 103, 211-219 [doi:10.1016/j.electacta.2013.03.198]

Bakkar et Neubert, 2015, A new method for practical electrodeposition of aluminium from ionic liquids, Electrochemistry Communications, 51, 113-116 [doi:10.1016/j.elecom.2014.12.012]

Bérubé et L'Espérance, 1989, A Quantitative Method of Determining the Degree of Texture of Zinc Electrodeposits, Journal of The Electrochemical Society, 136, 2314 [doi:10.1149/1.2097318]

Byrne, 2003, Raman spectroscopy and x-ray diffraction studies of zinc oxide grown by pulsed laser deposition, Université de Dublin [url:http://doras.dcu.ie/17410/]

Caporali, Fossati, Lavacchi, Perissi, Tolstogouzov et Bardi, 2008, Aluminium electroplated from ionic liquids as protective coating against steel corrosion, Corrosion Science, 50, 534-539 [doi:10.1016/j.corsci.2007.08.001]

Caporali, Marcantelli, Chiappe et Pomelli, 2015, Electrodeposition of transition metals from highly concentrated solutions of ionic liquids, Surface and Coatings Technology/span>264, 23-31 [doi:10.1016/j.surfcoat.2015.01.031]

Chakkaravarthy et Udupa, 1983, On the suppression of self discharge of the zinc electrodes of zinc—air cells and other related battery systems, Journal of Power Sources, 10, 197-200 [doi:10.1016/0378-7753(83)87008-6]

Chakkaravarthy, Waheed et Udupa, 1981, Zinc—air alkaline batteries — A review, Journal of Power Sources, 6, 203-228 [doi:10.1016/0378-7753(81)80027-4]

Chao-Cheng, 1994, Electrodeposition of aluminum in molten AlCl3-n-butylpyridinium chloride electrolyte, Materials Chemistry and Physics, 37, 355-361 [doi:10.1016/0254-0584(94)90175-9]

Cho, Park, Lee et Kim, 2015, Aluminum anode for aluminum–air battery – Part I: Influence of aluminum purity, Journal of Power Sources, 277, 370-378 [doi:10.1016/j.jpowsour.2014.12.026]

Chu, 1981, Substrate Effects on Zinc Deposition from Zincate Solutions, Journal of The Electrochemical Society, 128, 2281 [doi:10.1149/1.2127235]

De Carvalho, Barbano et Carlos, 2013, Influence of disodium ethylenediaminetetraacetate on zinc electrodeposition process and on the morphology, chemical composition and structure of the electrodeposits, Electrochimica Acta, 109, 798-808 [doi:10.1016/j.electacta.2013.07.149]

De Carvalho et Carlos, 2013, Zinc electrodeposition from alkaline solution containing trisodium nitrilotriacetic added, Electrochimica Acta, 113, 229-239 [doi:10.1016/j.electacta.2013.09.136]

Devyatkina, Gun’ko et Mikhalenko, 2001, Development of Ways To Diminish Corrosion of Zinc Electrode, Russian Journal of Applied Chemistry, 74, 1122-1125 [doi:10.1023/A:1013058615990]

Endres, El Abedin, Saad, Moustafa, Borissenko, Price, Wallace, MacFarlane, Newman et Bund, 2008, On the electrodeposition of titanium in ionic liquids, Physical Chemistry Chemical Physics, 10, 2189 [doi:10.1039/b800353j]

Fan, Lu et Leng, 2015, Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries, Electrochimica Acta, 165, 22-28 [doi:10.1016/j.electacta.2015.03.002]

Fan, Lu, Leng, Sun et Chen, 2015, The effect of crystal orientation on the aluminum anodes of the aluminum–air batteries in alkaline electrolytes, Journal of Power Sources, 229, 66-69 [doi:10.1016/j.jpowsour.2015.08.095]

Fang, Yoshii, Jiang, Sun, Tsuda, Mehio et Dai, 2015, An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum, Electrochimica Acta, 160, 82-88 [doi:10.1016/j.electacta.2015.02.020]

Fournier et Favier, 2011, Zn, Ti and Si nanowires by electrodeposition in ionic liquid, Electrochemistry Communications, 13, 1252-1255 [doi:10.1016/j.elecom.2011.08.031]

Frade, Bouzon, Gomes et da Silva Pereira, 2010, Pulsed-reverse current electrodeposition of Zn and Zn-TiO2 nanocomposite films, Surface and Coatings Technology, 204, 3529-3598 [doi:10.1016/j.surfcoat.2010.04.030]

Gasporotto, Prowald, Borisenko, El Abedin, Garsuch et Endres, 2011, , Journal of Power Sources, 196, 2879-2883 [10.1016/j.jpowsour.2010.10.104]

Giridhar, El Abedin et Endres, 2012, Electrodeposition of aluminium from 1-butyl-1-methylpyrrolidinium chloride/AlCl3 and mixtures with 1-ethyl-3-methylimidazolium chloride/AlCl3, Electrochimica Acta, 70, 210-214 [doi:10.1016/j.electacta.2012.03.056]

Gomes et Da Silva Pereira, 2006, Zn electrodeposition in the presence of surfactants, Electrochimica Acta, 52, 863-871 [doi:10.1016/j.electacta.2006.06.025]

Hang, Tang, Kobayashi, 2013, Fe/carbon nanofiber composite materials for Fe–air battery anodes, Journal of Electroanalytical Chemistry, 704, 145-152 [doi:10.1016/j.jelechem.2013.06.018]

Hilder, Winther-Jensen et Clark, 2012, The effect of binder and electrolyte on the performance of thin zinc-air battery, Electrochimica Acta, 69, 308-314 [doi:10.1016/j.electacta.2012.03.004]

Huang, Zhao, Wang, Zhang et Pan, 2013, Performance of Mg–air battery based on AZ31 alloy sheet with twins, Materials Letters, 113, 46-49 [doi:10.1016/j.matlet.2013.09.041]

Jiang, Chollier Brym, Dubé, Lasia et Brisard, 2006, Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids, Surface and Coatings Technology, 201, 1-9 [doi:10.1016/j.surfcoat.2005.10.046]

Jiang, Chollier Brym, Dubé, Lasia et Brisard, 2006, Electrodeposition of aluminium from ionic liquids: Part II - studies on the electrodeposition of aluminum from aluminum chloride (AICl3) - trimethylphenylammonium chloride (TMPAC) ionic liquids, Surface and Coatings Technology, 201, 10-18 [doi:10.1016/j.surfcoat.2005.12.024]

Kavitha, Santhosh, Renukadevi, Kalpana, Shakkthivel et Vasudevan, 2006, Role of organic additives on zinc plating, Surface and Coatings Technology, 201, 3438-3442 [doi:10.1016/j.surfcoat.2006.07.235]

Keist, Orme, Wright et Evans, 2015, An in situ AFM Study of the Evolution of Surface Roughness for Zinc Electrodeposition within an Imidazolium Based Ionic Liquid Electrolyte, Electrochimica Acta, 152, 161-171 [doi:10.1016/j.electacta.2014.11.091]

Khoo, Howlett, Tsagouria, MacFarlane et Forsyth, 2011, The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries, Electrochimica Acta, 58, 583-588 [doi:10.1016/j.electacta.2011.10.006]

Lecoeur, 2011, Élaboration de collecteurs de courant structurés en aluminium pour accumulateurs à ions lithium par synthèses électrochimiques en milieux liquides ioniques, Université d'Amiens [url:http://www.theses.fr/2011AMIE0109]

Lee, Sathiyanarayanan, Eom et Yun, 2006, Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery, Journal of Power Sources, 160, 1436-1441 [doi:10.1016/j.jpowsour.2006.02.019]

Lee et Kang, 2002, Atomic Layer Deposition of Aluminum Thin Films Using an Alternating Supply of Trimethylaluminum and a Hydrogen Plasma, Electrochemical and Solid-State Letters, 5, C91 [doi:10.1149/1.1503204]

Lee et Kang, 2002, Study on the characteristics of alumdinum thin films prepared by atomic layer deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20, 1983

Li, Chen, Yan et Ma, 2010, Pulse Current Electrodeposition of Al from an AlCl3-EMIC Ionic Liquid Containing NdCl3, Electrochemistry, 78, 523-525 [doi:10.5796/electrochemistry.78.523]

Li, Fan, Chen, Lou et Yan, 2011, Pulse current electrodeposition of Al from an AlCl3-EMIC ionic liquid, Electrochimica Acta, 56, 5478-5482 [doi:10.1016/j.electacta.2011.03.047]

Li, Feng, Zhang, Yang, Li et An, 2014, Pulse reverse electrodeposition and characterization of nanocrystalline zinc coatings, RSC Adv., 4, 52562-52570 [doi:10.1039/C4RA09421B]

Li, Li, Zhou, Ma et Chen, 2006, Metallic Magnesium Nano/Mesoscale Structures: Their Shape-Controlled Preparation and Mg/Air Battery Applications, Angewandte Chemie International Edition, 45, 6009-6012 [doi:10.1002/anie.200600099]

Li, Xu, Ling, Liu, Chen et Zhang, 2011, Formation of aluminide coatings by low-temperature heat treatment of Al coating electrodeposited from ionic liquid, Journal of Nuclear Materials, 412, 274-277 [doi:10.1016/j.jnucmat.2011.03.035]

Liang, Wu, Chen, Li et Yu, 2015, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery, Nano Energy, 11, 366-376 [doi:10.1016/j.nanoen.2014.11.008]

Liu, Li et Wang, 2010, Electrochemical Corrosion Behavior of Nanocrystalline Materials—a Review, Journal of Materials Science & Technology, 26, 1-14 [doi:10.1016/S1005-0302(10)60001-1]

Liu, Shi, Cai, Hao et Zhao, 2013, Determination of copper, zinc, cadmium and lead in water using co-precipitation method and raman spectroscopy, Journal of Innovative Optical Health Sciences, 6, 1350021 [doi:10.1142/S1793545813500211]

Liu, El Abedin et Endres, 2013, Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures, Electrochimica Acta, 89, 635-643 [doi:10.1016/j.electacta.2012.11.077]

Manamela, Murulana, Kabanda et Ebenso, 2014, Adsorptive and DFT studies of some imidazolium based ionic liquids as corrosion inhibitors for zinc in acidic medium, Int. J. Electrochem. Sci, 9, 3029–3046

Masri, Nazeri, Ng et Mohamad, 2015, Tapioca binder for porous zinc anodes electrode in zinc–air batteries, Journal of King Saud University - Engineering Sciences, 27, 217-224 [doi:10.1016/j.jksues.2013.06.001]

McLarnon et Cairns, 1991, The Secondary Alkaline Zinc Electrode, Journal of The Electrochemical Society, 138, 645 [doi:10.1149/1.2085653]

Mokhtar, Talib, Majlan, Tasirin, Ramli, Daud et Sahari, 2015, Recent developments in materials for aluminum–air batteries: A review, Journal of Industrial and Engineering Chemistry, 32, 1-20 [url:10.1016/j.jiec.2015.08.004]

Montagné et Tillard, 2013, Alliages intermétalliques du magnésium, anodes pour MAFC ?, MATEC Web of Conferences, 7, 1008 [doi:10.1051/matecconf/20130701008]

Mukhopadhyay, Aravinda, Borissov et Freyland, 2005, Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy, Electrochimica Acta, 50, 1275-1281 [doi:10.1016/j.electacta.2004.07.052]

Müller, Holzer et Haas, 1998, Optimized zinc electrode for the rechargeable zinc–air battery, Journal of Applied Electrochemistry, 28, 895-898 [doi:10.1023/A:1003464011815]

Muralidhara et Arthoba Naik, 2008, Electrochemical deposition of nanocrystalline zinc on steel substrate from acid zincate bath, Surface and Coatings Technology, 202, 3403-3412 [doi:10.1016/j.surfcoat.2007.12.012]

Naik, Venkatesha et Nayak, 2002, Electrodeposition of zinc from chloride solution, Turkish Journal of Chemistry, 26, 725-733

NuLi, Yang et Wang, 2006, Electrodeposition of magnesium film from BMIMBF4 ionic liquid, Applied Surface Science, 252, 8086-8090 [doi:10.1016/j.apsusc.2005.10.022]

Oltean, Nyholm et Edström, 2011, Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors, Electrochimica Acta, 56, 3203-3208 [doi:10.1016/j.electacta.2011.01.053]

Özdemir et Karahan, 2014, Electrodeposition and properties of Zn, Cu, and Cu1−x Znx thin films, Applied Surface Science, 318, 314-318 [doi:10.1016/j.apsusc.2014.06.188]

Parker, Chervin, Nelson, Rolison et Long, 2014, Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling, Energy Environ. Sci., 7, 1117-1124 [doi:10.1039/C3EE43754J]

Rai et Yu, 2012, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application, Sensors and Actuators B: Chemical, 173, 58-65 [doi:10.1016/j.snb.2012.05.068]

Ramanauskas, Gudavičiūtė, Juškėnas et Ščit, 2007, Structural and corrosion characterization of pulse plated nanocrystalline zinc coatings, Electrochimica Acta, 53, 1801-1810 [doi:10.1016/j.electacta.2007.08.036]

Saber, Koch et Fedkiw, 2003, Pulse current electrodeposition of nanocrystalline zinc, Materials Science and Engineering: A, 341, 174-181 [doi:10.1016/S0921-5093(02)00198-3]

Sapkota et Kim, 2009, Zinc–air fuel cell, a potential candidate for alternative energy, Journal of Industrial and Engineering Chemistry, 15, 445-450 [doi:10.1016/j.jiec.2009.01.002]

Schumm, 2010, ZnO-based semiconductors studied by Raman spectroscopy: semimagnetic alloying, doping, and nanostructures, Université de Wuerzburg [url:https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/2969]

Simka, Puszczyk et Nawrat, 2009, Electrodeposition of metals from non-aqueous solutions, Electrochimica Acta, 54, 5307-5319 [doi:10.1016/j.electacta.2009.04.028]

Simons, Torriero, Howlett, MacFarlane et Forsyth, 2012, High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration, lectrochemistry Communications, 18, 119-122 [doi:10.1016/j.elecom.2012.02.034]

Sode et Bizzotto, 2009, Adsorbate-induced surface reorganization on PtZn electrode, Electrochimica Acta, 54, 1095-1101 [doi:10.1016/j.electacta.2008.08.046]

Sree, Dendooven, Koranyi, Vanbutsele, Houthoofd, Deduytsche, Detavernier et Martens, 2011, Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement, Catalysis Science & Technology, 1, 218 [doi:10.1039/c0cy00056f]

Sun, Hur, Zhao et Kim, 2011, Fabrication of Very-High-Aspect-Ratio Micro Metal Posts and Gratings by Photoelectrochemical Etching and Electroplating, Journal of Microelectromechanical Systems, 20, 876-884 [doi:10.1109/JMEMS.2011.2148163]

Tang, Lu, Roesky, Wang et Huang, 2004, The effect of zinc on the aluminum anode of the aluminum–air battery, Journal of Power Sources, 138, 313-318 [doi:10.1016/j.jpowsour.2004.06.043]

Tian, Cheng, Liu et Guo, 2012, Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition, Advanced Materials Research, 460, 300-303 [doi:10.4028/www.scientific.net/AMR.460.300]

Urry, 2000, Zinc anode for an electochemical cell, US 6 022 639 [url:https://www.google.fr/patents/US6022639]

Vasilakopoulos, Bouroushian et Spyrellis, 2006, Texture and morphology of pulse plated zinc electrodeposits, Journal of Materials Science, 41, 2869-2875 [doi:10.1007/s10853-005-5161-z]

Vasilakopoulos, Bouroushian et Spyrellis, 2009, Electrocrystallisation of zinc from acidic sulphate baths; A nucleation and crystal growth process, Electrochimica Acta 54, 2509-2514 [doi:10.1016/j.electacta.2008.11.059]

Wang, Jia, Wang, Yao, Yue et Jing, 2013, Electrochemical deposition of magnesium from analogous ionic liquid based on dimethylformamide, Electrochimica Acta, 108, 384-389 [doi:10.1016/j.electacta.2013.07.004]

Wang, Pei, Ma, Xu, Li et Wang, 2014, Morphology control of zinc regeneration for zinc–air fuel cell and battery, Journal of Power Sources, 271, 65-75 [doi:10.1016/j.jpowsour.2014.07.182]

Wang, Wang, Peng, Hu, Feng et Peng, 2014, Research progress of magnesium anodes and their applications in chemical power sources, Transactions of Nonferrous Metals Society of China, 24, 2427-2439 [doi:10.1016/S1003-6326(14)63367-7]

Wang, Nuli, Yang et Feng, 2006, Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium, Surface and Coatings Technology, 201, 3783-3787 [doi:10.1016/j.surfcoat.2006.03.020]

Xia, Zhitomirsky et McDermid, 2009, Electrodeposition of zinc and composite zinc–yttria stabilized zirconia coatings, Journal of Materials Processing Technology, 209, 2632-2640 [doi:10.1016/j.jmatprotec.2008.06.031]

Yang, 2002, Improvement of high-rate capability of alkaline Zn–MnO2 battery, Journal of Power Sources, 112, 174-183 [doi:10.1016/S0378-7753(02)00354-3]

Yim, 1995, Crystallographic Texture and Microstructure of Electrogalvanized Layer in Acid Sulfate Solution, Journal of The Electrochemical Society, 142, 2604 [doi:10.1149/1.2050061]

Yin et Lin, 1996, Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel, Surface and Coatings Technology, 78, 205-210 [doi:10.1016/0257-8972(94)02410-3]

Youssef, Koch et Fedkiw, 2008, Influence of pulse plating parameters on the synthesis and preferred orientation of nanocrystalline zinc from zinc sulfate electrolytes, Electrochimica Acta, 54, 677-683 [doi:10.1016/j.electacta.2008.07.048]

Yue, Lu, Zhu, Zhang et Zhang, 2009, Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid, Chemical Engineering Journal, 174, 79-86 [doi:10.1016/j.cej.2008.11.044]

Zech et Landolt, 2000, The influence of boric acid and sulfate ions on the hydrogen formation in NiFe plating electrolytes, Electrochimica Acta, 45, 3461-3471 [doi:10.1016/S0013-4686(00)00415-1]

Zhang et Hua, 2012, Influence of [BMIM]HSO4 on electrodeposition and corrosion behavior of Zn coatings from acidic sulfate bath: Electrodeposition and corrosion behavior of Zn coatings, Surface and Interface Analysis, 44, 1254-1260 [doi:10.1002/sia.4937]

Zhang, 2006, Fibrous zinc anodes for high power batteries, Journal of Power Sources, 163, 591-597 [doi:10.1016/j.jpowsour.2006.09.034]

Zhang, Leng, Cai, Cao et Zhang, 2005, Study of the zinc electroplating process using electrochemical noise technique, Journal of Electroanalytical Chemistry, 578, 357-367 [doi:10.1016/j.jelechem.2005.01.029]

Zheng, Zhang, Lu, Wang, Zuo et Liu, 2012, Low-temperature Electrodeposition of Aluminium from Lewis Acidic 1-Allyl-3-methylimidazolium Chloroaluminate Ionic Liquids, Chinese Journal of Chemical Engineering, 20, 130-139 [doi:10.1016/S1004-9541(12)60372-3]

_cathode materials

Adams, Karulkar, Anandan, 2013, Evaluation and electrochemical analyses of cathodes for lithium-air batteries, Journal of Power Sources, 239, 132-143 [doi:10.1016/j.jpowsour.2013.03.140]

Binder, Odar et Kordesch, 1981, A study of rechargeable zinc electrodes for alkaline cells requiring anodic limitation, Journal of Power Sources, 6, 271-289 [doi:10.1016/0378-7753(81)80032-8]

Cao, Lu, Yu, Xu, Yang et Lu, 2016, Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li-O2 batteries, Nanotechnology, 27, 135703 [doi:10.1088/0957-4484/27/13/135703]

Chen, Choi, Wang, Li et Chen, 2011, Highly durable and active non-precious air cathode catalyst for zinc air battery, Journal of Power Sources, 196, 3673-3677 [doi:10.1016/j.jpowsour.2010.12.047]

Cheng et Wu, 2013, Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells, Bioelectrochemistry, 92, 22-26 [doi:10.1016/j.bioelechem.2013.03.001]

Chervin, Wattendorf, Long, Kucko et Rolison, 2013, Carbon Nanofoam-Based Cathodes for Li-O2 Batteries: Correlation of Pore-Solid Architecture and Electrochemical Performance, Journal of the Electrochemical Society, 160, A1510-A1516 [doi:10.1149/2.070309jes]

Chervin, Long, Brandell, Wallace, Kucko et Rolison, 2012, Redesigning air cathodes for metal–air batteries using MnOx-functionalized carbon nanofoam architectures, Journal of Power Sources, 207, 191-198 [doi:10.1016/j.jpowsour.2012.01.146]

Dong, Yu, Wang, Zhou et Feng, 2012, A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells, Water Research, 46, 5777-5787 [doi:10.1016/j.watres.2012.08.005]

Drillet, Holzer, Kallis, Muller, Schmidt, 2001, Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials, Physical Chemistry Chemical Physics, 3, 368-371 [doi:10.1039/b005523i]

Fujiwara, Yao, Siroma, Senoh, Ioroi et Yasuda, 2011, Reversible air electrodes integrated with an anion-exchange membrane for secondary air batteries, Journal of Power Sources, 196, 808-813 [doi:10.1016/j.jpowsour.2010.07.074]

Garsuch, Panchenko, Querner, Karpov, Huber et Oesten, 2010, FeAgMo2O8 — A novel oxygen evolution catalyst material for alkaline metal–air batteries, Electrochemistry Communications, 12, 1642-1645 [doi:10.1016/j.elecom.2010.09.016]

Ge, Liu, Goh, Hor, Zong, Xiao, Zhang, Lim, Li, Wang et Liu, 2014, Dual-Phase Spinel MnCoO2O4 and Spinel MnCo2O4/Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution, ACS Applied Materials & Interfaces, 6, 12684-12691 [doi:10.1021/am502675c]

Goldstein, Sassen, Abramzon et Dopp, 2000, An air electrode providing high current density for metal-air batteries, WO0036676 [url:https://encrypted.google.com/patents/WO2000036676A1]

Jung, Hwang, Park, Kim, Kim, Dou, Kim et Lee, 2014, One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries, ACSMS2014 Scientific Reports, 5, 7665 [doi:10.1038/srep07665]

Kotani, Nakanishi, Nishio et Tomohiko, 2015, Air cathode for air batteries and air battery, US9225018 [url:http://www.google.com/patents/US9225018]

Lee, Choi, Feng, Park et Chen, 2013, Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries, Advanced Energy Materials, 4, 1301389 [doi:10.1002/aenm.201301389]

Li, Hu, Lee, Chang et Wang, 2014, Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries, Journal of Power Sources, 269, 88-97 [doi:10.1016/j.jpowsour.2014.06.108]

Li, Li, Huang et Xing, 2012, A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte, Electrochimica Acta, 81, 20-24 [doi:10.1016/j.electacta.2012.07.060]

Liu, Wang, Dai et Yao, 2016, Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries, Advanced Materials, 28, 3000-3006 [doi:10.1002/adma.201506112]

Liu, Xu, Chang et Zhang, 2014, Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O2 battery, J. Mater. Chem. A, 2, 6081-6085 [doi:10.1039/C3TA14011C]

Liu, Sun, Yang, Xie et Fu, 2013, An enhanced electrochemical performance of a sodium–air battery with graphene nanosheets as air electrode catalysts, Chemical Communications, 49, 1951 [doi:10.1039/c3cc00085k]

Long, Chervin, Kucko, Nelson et Dolison, 2013, Dual-Function Air Cathode for Metal-Air Batteries with Pulse-Power Capability, Advanced Energy Materials, 3, 584-588 [doi:10.1002/aenm.201200921]

McKerracher, Alegre, Baglio, Aricò, Ponce de León, Mornaghini, Rodlert et Walsh, 2015, A nanostructured bifunctional PdC gas-diffusion electrode for metal-air batteries, Electrochimica Acta, 174, 508-515 [doi:10.1016/j.electacta.2015.06.001]

Meng, Liu, Zhneg, Sheng et Zhang, 2011, Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation, Microchimica Acta, 175, 251-257 [doi:10.1007/s00604-011-0688-y]

Michaud, 2013, Electrodeposition of Co-Mn and Cu-Mn based Spinels onto Solid Oxide Fuel Cell Interconnects, McMaster University [url:https://macsphere.mcmaster.ca/handle/11375/12818]

Park, Lee, Zamani, Seo, Nazar et Chen, 2014, Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries, Nano Energy, 10, 192-200 [doi:10.1016/j.nanoen.2014.09.009]

Peng, Freunberger, Chen et Bruce, 2012, A Reversible and Higher-Rate Li-O2 Battery, Science, 337, 563-566 [doi:10.1126/science.1223985]

Prabu, Ramakrishnan, Ganesan, Manthiram et Shanmugam, 2015, LaTi0.65Fe0.35O3−δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries, Nano Energy, 15, 92-103 [doi:10.1016/j.nanoen.2015.04.005]

Roche et Scott, 2009, Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution, Journal of Applied Electrochemistry, 39, 197-204 [doi:10.1007/s10800-008-9653-9]

Rodrigues, Shukla et Munichandraiah, 1998, A cyclic voltammetric study of the kinetics and mechanism of electrodeposition of manganese dioxide, Journal of Applied Electrochemistry, 28, 1235-1241 [doi:10.1023/A:1003472901760]

Rozain et Guillet, 2015, Cathode for a Lithium/Air Battery, Comprising a Bilayer Structure of Different Catalysts and Lithium/Air Battery Comprising This Cathode, FR2991103 [url:https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150814&DB=&locale=&CC=FR&NR=2991103B1&KC=B1&ND=1]

Sahgong, Senthilkumar, Kim, Hwang et Kim, 2015, Rechargeable aqueous Na–air batteries: Highly improved voltage efficiency by use of catalysts, Electrochemistry Communications, 61, 53-56 [doi:10.1016/j.elecom.2015.10.004]

Sangaré, 2013, Étude de la nature du substrat sur la performance d'une électrode bifonctionnelle pour les piles zinc-air, UQAM [url:http://www.archipel.uqam.ca/6110/]

Sciarria, Merlino, Scaglia, D'Epifanio, Mecheri, Borin, Licoccia et Adani, 2015, Electricity generation using white and red wine lees in air cathode microbial fuel cells, Journal of Power Sources, 274, 393-399 [doi:10.1016/j.jpowsour.2014.10.050]

Shinde, Go et Lee, 2012, Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting, Journal of Materials Chemistry, 22, 10469 [doi:10.1039/c2jm31254a]

Shu, Wang, Jiang et Sun, 2013, High performance cathode based on carbon fiber felt for magnesium-air fuel cells, International Journal of Hydrogen Energy, 38, 5885-5893 [doi:10.1016/j.ijhydene.2013.02.093]

Storm, Norby et Luntz, 2016, Preparation and Characterization of Cathode Materials for Lithium-Oxygen Batteries, Technical University of Denmark

Thapa, Pandit, Paudel, Thapa, Ida, Jasinski, Sumanasekera et Ishihara, 2014, Polythiophene Mesoporous Birnessite-MnO2/Pd Cathode Air Electrode for Rechargeable Li-Air Battery, Electrochimica Acta, 127, 410-415 [doi:10.1016/j.electacta.2014.02.071]

Tran, Ha et Le, 2015, Nanoflake Manganese Oxide and Nickel-Manganese Oxide Synthesized by Electrodeposition for Electrochemical Capacitor, Journal of Nanomaterials, 2015, 1-12 [doi:10.1155/2015/609273]

Umena, Kawakami, Shen et Kamiya, 2011, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 473, 55-60 [doi:10.1038/nature09913]

Velraj et Zhu, 2013, Sm0.5Sr0.5CoO3−δ – A new bi-functional catalyst for rechargeable metal-air battery applications, Journal of Power Sources, 227, 48-52 [doi:10.1016/j.jpowsour.2012.11.031]

Velraj et Zhu, 2015, Cycle life limit of carbon-based electrodes for rechargeable metal–air battery application, Journal of Electroanalytical Chemistry, 736, 76-82 [doi:10.1016/j.jelechem.2014.11.003]

Wang, De Tacconi, Chenthamarakshan, Rajeshwar et Tao, 2007, Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior, Thin Solid Films, 515, 3090-3095 [doi:10.1016/j.tsf.2006.08.041]

Wang, Wen, Song, Ye, Zhang, Pan, Ly, Liao et He, 2015, Gas transport evaluation in lithium–air batteries with micro/nano-structured cathodes, Journal of Power Sources, 274, 762-767 [doi:10.1016/j.jpowsour.2014.10.117]

Wei et Liu, 2011, Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt 2 M skin alloys, Energy & Environmental Science, 4, 1268-1272 [doi:10.1039/C0EE00762E]

Wei, Cheong, Nagarajan et Zhitomirsky, 2007, Cathodic Electrodeposition of Manganese Oxides for Electrochemical Supercapacitors, ECS Transactions, 3, 1-9 [doi:10.1149/1.2795229]

Wen, Wang, Yan, Cong, Chen et Xi, 2014, Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells, Bioelectrochemistry, 95, 23-28 [doi:10.1016/j.bioelechem.2013.10.007]

Williams, Begg, Bonville, Kunz et Fenton, 2004, Characterization of Gas Diffusion Layers for PEMFC, Journal of The Electrochemical Society, 151, A1173 [doi:10.1149/1.1764779]

Wu et Chiang, 2004, Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors, Electrochemical and Solid-State Letters, 7, A123 [doi:10.1149/1.1695533]

Xue, Miao, Sun, Wang, Li et Liu, 2015, Template-directed fabrication of porous gas diffusion layer for magnesium air batteries, Journal of Power Sources, 297, 202-207 [doi:10.1016/j.jpowsour.2015.06.141]

Yang, 2004, Preparation and characterization of electrochemical properties of air cathode electrode, International Journal of Hydrogen Energy, 29, 135-143 [doi:10.1016/S0360-3199(03)00090-9]

Ye, Wang, Lv, Fei, Zhu, Liang, Song, Zhai et He, 2015, Analytical insight into the oxygen diffusion in wetted porous cathodes of Li-air batteries, Energy, 93, 416-420 [doi:10.1016/j.energy.2015.09.054]

Zaharieva, Najafpour, Wiechen, Haumann, Kurz et Dau, 2011, Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally, Energy & Environmental Science, 4, 2400 [doi:10.1039/c0ee00815j]

Zhao, Masa, Xia, Maljusch, Willinger, Clavel, Xie, Schlögl, Schuhmann et Muhler, 2014, Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting, Journal of the American Chemical Society, 136, 7551-7554 [doi:10.1021/ja502532y]

Zhao, Zhang, Wang et Sun, 2015, Cuprous oxide as Cathode Catalysts of Lithium Oxygen Batteries, Electrochimica Acta, 184, 117-123 [doi:10.1016/j.electacta.2015.10.059]

Zhu, Chen, Li, Higgins, Wang, Li et CHen, 2011, Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery, Electrochimica Acta, 56, 5080-5084 [doi:10.1016/j.electacta.2011.03.082]

_general concepts and electrochemistry

Abbott, Frisch et Ryder, 2013, Electroplating Using Ionic Liquids, Annual Review of Materials Research, 43, 335-358 [doi:10.1146/annurev-matsci-071312-121640]

Abraham et Jiang, 1996, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, 143 (1), 1-5 [doi:10.1149/1.1836378]

Akmal, Othman et Hanafi Ani, 2013, Comparative Electrochemical Performance Characteristics of Aluminium-Air Cell Employing Seawater and NaCl Electrolytes, Advanced Materials Research, 701, 314-318, [doi:10.4028/www.scientific.net/AMR.701.314]

Arai, 2015, Metal Storage/Metal Air (Zn, Fe, Al, Mg), Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 2015, Elsevier [doi:10.1016/B978-0-444-62616-5.00018-8]

Armand et Tarascon, 2008, Building better batteries, Nature, 451, 652–657 [doi:10.1038/451652a]

Asadi, Sayahpour, Abbasi, Ngo, Karis, Jokisaari, Liu, Narayanan, Gerard, Yasaei, Hu, Mukherjee, Lau, Assary, Khalili-Araghi, Klie, Curtiss et Salehi-Khojin, 2018, A lithium–oxygen battery with a long cycle life in an air-like atmosphere, Nature, 555, 502-506 [doi:10.1038/nature25984]

Aurbach, Weissman, Gofer et Levi, 2002, Nonaqueous Magnesium Electrochemistry and Its Application in Secondary Batteries, The Chemical Record, 3, 61–73 [doi:10.1002/tcr.10051]

Besenhard, 1999, Handbook of battery materials, Wiley-VCH [ISBN:978-3-527-29469-5]

Blurton et Sammells, 1979, Metal/air batteries: Their status and potential — a review, Journal of Power Sources, 4 (4), 263-279 [doi:10.1016/0378-7753(79)80001-4]

Chasteen, Chasteen et Doherty, 2008, The Salty Science of the Aluminum-Air Battery, The Physics Teacher, 46, 544-547 [doi:10.1119/1.3023656]

Cohn et Ein-Eli, 2010, Study and development of non-aqueous silicon-air battery, Journal of Power Sources, 195 (11), 4963-4970 [doi:10.1016/j.jpowsour.2010.02.070]

Collins, An overview of POWAIR – A zinc air flow battery for low cost electrical energy storage

Crompton, 2010, Battery reference book 3rd edition, Newnes [ISBN:978-0-7506-4625-3]

Dahn, Electrically Rechargeable Metal-air Batteries Compared to Advanced Lithium-ion Batteries

Darchen, 2010, Électrochimie appliquée Caractérisations des systèmes électrochimiques, Techniques de l'ingénieur [url:http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/proprietes-electriques-et-electrochimiques-42336210/electrochimie-appliquee-k800/]

Das, Xu et Archer, 2013, Carbon dioxide assist for non-aqueous sodium–oxygen batteries, Electrochemistry Communications, 27, 59-62 [doi:10.1016/j.elecom.2012.10.036]

Drillet, Adam, Barg, Herter, Koch, Schmidt et Wilhelm, 2010, Development of a Novel Zinc/Air Fuel Cell with a Zn Foam Anode, a PVA/KOH Membrane and a MnO2/SiOC-Based Air Cathode, ECS Transactions, 28, 13-24 [doi:10.1149/1.3507923]

Egan, Ponce de León, Wood, Jones, Stokes et Walsh, 2013, Developments in electrode materials and electrolytes for aluminium–air batteries, Journal of Power Sources, 236, 293-310 [doi:10.1016/j.jpowsour.2013.01.141]

El Abedin, Moustafa, Hempelmann, Natter et Endres, 2005, Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid, Electrochemistry Communications, 7, 1111-1116 [doi:10.1016/j.elecom.2005.08.010]

El Abedin, Moustafa, Hempelmann, Natter et Endres, 2006, Electrodeposition of Nano- and Microcrystalline Aluminium in Three Different Air and Water Stable Ionic Liquids, ChemPhysChem, 7, 1535-1543 [doi:10.1002/cphc.200600095]

El Abedin, 2012, Electrochemical behavior of aluminum and some of its alloys in chloroaluminate ionic liquids: electrolytic extraction and electrorefining, Journal of Solid State Electrochemistry, 16, 775-783 [doi:10.1007/s10008-011-1425-5]

Endres, MacFarlane et Abbott, 2008, Electrodeposition from ionic liquids, Wiley-VCH [ISBN:978-3-527-31565-9]

Flipsen, 2006, Power sources compared: The ultimate truth?, Journal of Power Sources, 162, 927-934 [doi:10.1016/j.jpowsour.2005.07.007]

Goldstein, Brown et Koretz, 1999, New developments in the Electric Fuel Ltd. zinc/air system, Journal of Power Sources, 80, 171-179 [doi:10.1016/S0378-7753(98)00260-2]

Ha, Kim, Choi, Kim et Lee, 2014, Sodium-Metal Halide and Sodium-Air Batteries, ChemPhysChem, 15, 1971–1982 [doi:10.1002/cphc.201402215]

Hartmann, Bender, Sann, Dürr, Jansen, Janek et Adelhelm, 2013, A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery, Physical Chemistry Chemical Physics, 15, 11661 [doi:10.1039/c3cp50930c]

Hayashi, Shima et Sugiyama, 2013, A Mixed Aqueous/Aprotic Sodium/Air Cell Using a NASICON Ceramic Separator, Journal of the Electrochemical Society, 160, A1467-A1472 [doi:10.1149/2.067309jes]

Hu et Noréus, 2010, Lab-size rechargeable metal hydride–air cells, Journal of Power Sources, 195, 2010 [doi:10.1016/j.jpowsour.2010.03.086]

Inoishi, Ju, Ida et Ishihara, 2013, Fe–air rechargeable battery using oxide ion conducting electrolyte of Y2O3 stabilized ZrO2, Journal of Power Sources, 229, 12-15 [doi:10.1016/j.jpowsour.2012.11.121]

Inoishi, Sakai, Ju, Ida et Ishihara, 2014, Improved cycle stability of Fe–air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor, Journal of Power Sources, 262, 310-315 [doi:10.1016/j.jpowsour.2014.03.125]

Kaisheva, 2005, Metal-air batteries: research, development, application, Proceedings of the International Workshop "Portable and Emergency Energy Sources – from Materials to Systems

Kar, Simons, Forsyth et MacFarlane, 2014, Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective, Phys. Chem. Chem. Phys., 16, 18658-18674 [doi:10.1039/C4CP02533D]

Kim, Ohata, Kim, Rhee, Miyawaki et Yoon, 2014, Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal–air batteries: A fundamental reason, Carbon, 80, 698-707 [doi:10.1016/j.carbon.2014.09.014]

Kraytsberg et Ein-Eli, 2013, The impact of nano-scaled materials on advanced metal–air battery systems, Nano Energy, 2, 468-480 [doi:10.1016/j.nanoen.2012.11.016]

Kuboki, Okuyama, Ohsaki et Takami, 2005, Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte, Journal of Power Sources, 146, 766-769 [doi:10.1016/j.jpowsour.2005.03.082]

Layton, 2008, A Comparison of Energy Densities of Prevalent Energy Sources in Units of Joules Per Cubic Meter, International Journal of Green Energy, 5, 438-455 [doi:10.1080/15435070802498036]

Lecoeur, Tarascon et Guery, 2010, Al Current Collectors for Li-Ion Batteries Made via a Template-Free Electrodeposition Process in Ionic Liquids, Journal of The Electrochemical Society, 157, A641 [doi:10.1149/1.3368667]

Lecoeur, Tarascon et Guery, 2011, Al Current Collectors for Li-Ion Batteries Made via an Oxidation Process in Ionic Liquids, Electrochemical and Solid-State Letters, 14, A6 [doi:10.1149/1.3511717]

Lee, Seo, Lim, Park, Park, Kim et Kang, 2014, First-Principles Study of the Reaction Mechanism in Sodium–Oxygen Batteries, Chemistry of Materials, 26, 1048-1055 [doi:10.1021/cm403163c]

Lee, Jeong, Lim, Le, Yi et Kim, 2010, The Stable Rechargeability of Secondary Zn-Air Batteries: Is It Possible to Recharge a Zn-Air Battery?, Journal of the Korean Electrochemical Society, 13, 45-49 [doi:10.5229/JKES.2010.13.1.045]

Lee et Kang, 2002, Study on the characteristics of alumdium thin films prepared by atomic layer deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20, 1983 [doi:10.1116/1.1513636]

Lefrou, Fouletier et Fabry, 2010, Conductivité des électrolytes, Techniques de l'ingénieur [url:http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/proprietes-electriques-et-electrochimiques-42336210/conductivite-des-electrolytes-k840/]

Lin, Gong, Lu, Wu, Wang, Guan, Angell, Chen, Yang, Hwang et Dai, 2015, An ultrafast rechargeable aluminium-ion battery, Nature, 520, 324-328 [doi:10.1038/nature14340]

Mizrahi, Amir, Pollak, Chusid, Marks, Gottlieb, Larush, Zinigrad et Aurbach, 2008, Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries, Journal of The Electrochemical Society, 155, A103-A109 [doi:10.1149/1.2806175]

Narayanan, Prakash, Manohar, Yang, Malkhandi et Kindler, 2012, Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage, Solid State Ionics, 216, 105-109 [doi:10.1016/j.ssi.2011.12.002]

Öjefors et Carlsson, 1978, An iron—air vehicle battery, Journal of Power Sources, 2, 287-296 [doi:10.1016/0378-7753(78)85019-8]

Pei, Wang et Ma, 2014, Technologies for extending zinc–air battery’s cyclelife: A review, Applied Energy, 128, 315-324 [doi:10.1016/j.apenergy.2014.04.095]

Peled, Golodnitsky, Mazor, Goor et Avshalomov, 2011, Parameter analysis of a practical lithium- and sodium-air electric vehicle battery, Journal of Power Sources, 196, 6835-6840 [doi:10.1016/j.jpowsour.2010.09.104]

Peled, Golodnitsky, Hadar, Mazor, Goor et Burstein, 2013, Challenges and obstacles in the development of sodium–air batteries, Journal of Power Sources, 244, 771-776 [doi:10.1016/j.jpowsour.2013.01.177]

Puapattanakul, Therdthianwong, Therdthianwong et Wongyao, 2013, Improvement of Zinc-Air Fuel Cell Performance by Gelled KOH, Energy Procedia, 34, 173-180 [doi:10.1016/j.egypro.2013.06.745]

Rahman, Wang et Wen, 2013, High Energy Density Metal-Air Batteries: A Review, Journal of the Electrochemical Society, 160, A1759-A1771 [doi:10.1149/2.062310jes]

Read, 2002, Characterization of the Lithium/Oxygen Organic Electrolyte Battery, Journal of The Electrochemical Society, 149, A1190 [doi:10.1149/1.1498256]

Read, Mutolo, Ervin, Behl, Wolfenstine, Driedger et Foster, 2003, Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery, Journal of The Electrochemical Society, 150, A1351 [doi:10.1149/1.1606454]

Revel, Audichon et Gonzalez, 2014, Non-aqueous aluminium–air battery based on ionic liquid electrolyte, Journal of Power Sources, 272, 415-421 [doi:10.1016/j.jpowsour.2014.08.056]

Sakai, 1995, Air-Metal Hydride Battery Construction and Evaluation, Journal of The Electrochemical Society, 142, 4040 [doi:10.1149/1.2048459]

Smedley et Zhang, 2007, A regenerative zinc–air fuel cell, Journal of Power Sources, 165, 897-904 [doi:10.1016/j.jpowsour.2006.11.076]

Sun, Yang et Fu, 2012, Electrochemical properties of room temperature sodium–air batteries with non-aqueous electrolyte, Electrochemistry Communications, 16, 22-25 [doi:10.1016/j.elecom.2011.12.019]

Tahil, 2007, The Zinc Air Battery and the Zinc Economy: A Virtuous Circle, White Paper Meridian International Research

Takeuchi, Marschilok et Takeuchi, 2012, Secondary Battery Science: At the Confluence of Electrochemistry and Materials Engineering, Electrochemistry, 80, 700-705 [doi:10.5796/electrochemistry.80.700]

Tsuneishi, Sakamoto, Hayashi, Kawamura, Muto et Matsuda, 2014, Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery, Journal of Asian Ceramic Societies, 2, 165-168 [doi:10.1016/j.jascer.2014.03.003]

Tyagi, Tripathi et Gupta, 2015, Recent progress in micro-scale energy storage devices and future aspects, J. Mater. Chem. A, 3, 22507-22541 [doi:10.1039/C5TA05666G]

Van der Ven, Puchala et Nagase, 2013, Ti- and Zr-based metal-air batteries, Journal of Power Sources, 242, 400-404 [doi:10.1016/j.jpowsour.2013.05.074]

Wen, Cheng, Nin et Yang, 2009, Preliminary study on zinc–air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction, Journal of Power Sources, 188, 301-307 [doi:10.1016/j.jpowsour.2008.11.054]

Xu, Ivey, Xie et Qu, 2015, Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement, Journal of Power Sources, 283, 358-371 [doi:10.1016/j.jpowsour.2015.02.114]

Yang et Knickle, 2002, Design and analysis of aluminum/air battery system for electric vehicles, Journal of Power Sources, 112, 162-173 [doi:10.1016/S0378-7753(02)00370-1]

Yang et Knickle, 2003, Modeling the performance of an aluminum–air cell, Journal of Power Sources, 124, 572-585 [doi:10.1016/S0378-7753(03)00811-5]

Zhang et Zhang, 2003, A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte, Solid State Ionics, 160, 155-159 [doi:10.1016/S0167-2738(03)00152-8]

Zhang, Zuo, Liu, Yu, Zuo et Song, 2014, All-solid-state Al–air batteries with polymer alkaline gel electrolyte, Journal of Power Sources, 251, 470-475 [doi:10.1016/j.jpowsour.2013.11.020]

Zhao, Li et Guo, 2014, Long-life Na–O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential, Physical Chemistry Chemical Physics, 16, 15646 [doi:10.1039/c4cp01961j]

Zu et Li, 2011, Thermodynamic analysis on energy densities of batteries, Energy & Environmental Science, 4, 2614 [doi:10.1039/c0ee00777c]

_irrelevant

Bahaloo Horeh, Mousavi et Shojaosadati, 2016, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, Journal of Power Sources, 320, 257-266 [doi:10.1016/j.jpowsour.2016.04.104]

Kar, Winther-Jensen, Forsyth et MacFarlane, 2013, Chelating ionic liquids for reversible zinc electrochemistry, Physical Chemistry Chemical Physics, 15, 7191 [doi:10.1039/c3cp51102b]

Rustomji, Yang, Kim, Mac, Kim, Caldwell, Chung et Meng, 2017, Liquefied gas electrolytes for electrochemical energy storage devices, Science, 356 [doi:10.1126/science.aal4263]

Simons, Howlett, Torriero, MacFarlane et Forsyth, 2013, Electrochemical, Transport, and Spectroscopic Properties of 1-Ethyl-3-methylimidazolium Ionic Liquid Electrolytes Containing Zinc Dicyanamide, The Journal of Physical Chemistry C, 117, 2662-2669 [doi:10.1021/jp311886h]

_lithium-ion and microbatteries

Arthur, Bates, Cirigliano, Johnson, Malati, Mosby, Pierre, Rawls, Prieto et Dunn, 2011, Three-dimensional electrodes and battery architectures, MRS Bulletin, 36, 523-531 [doi:10.1557/mrs.2011.156]

Baggetto, Oudenhoven, Van Dongen, Klootwijk, Mulder, Niessen, de Croon et Notten, 2009, On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries, Journal of Power Sources, 189, 402-410 [doi:10.1016/j.jpowsour.2008.07.076]

Bates, 2000, Thin-film lithium and lithium-ion batteries, Solid State Ionics, 135, 33-45 [doi:10.1016/S0167-2738(00)00327-1]

Brunet, 2013, Composants passifs intégrés dédiés à la conversion et au stockage de l'énergie, Université Paul Sabatier - Toulouse III

Cirigliano, 2013, Primary and Secondary Three Dimensional Microbatteries,

Donders, ArnoldBik, Knoops, Kessels et Notten, 2013, Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries, Journal of the Electrochemical Society, 160, A3066-A3071 [doi:10.1149/2.011305jes]

Ergang, Lytle, Lee, Oh, Smyrl et Stein, 2006, Photonic Crystal Structures as a Basis for a Three-Dimensionally Interpenetrating Electrochemical-Cell System, Advanced Materials, 18, 1750-1753 [doi:10.1002/adma.200600295]

Ferrari, Loveridge, Beattie, Jahn, Dashwood et Bhagat, 2015, Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, Journal of Power Sources, 286, 25-46 [doi:10.1016/j.jpowsour.2015.03.133]

Freixas, Eustache, Roussel, Brillard, Deresmes, Nuns, Rolland, Brousse et Lethien, 2015, Sputtered Titanium Nitride: A Bifunctional Material for Li-Ion Microbatteries, Journal of the Electrochemical Society, 162, A493-A500 [doi:10.1149/2.0051504jes]

Ho, Murata, Steingart, Evans et Wright, 2009, A super ink jet printed zinc–silver 3D microbattery, Journal of Micromechanics and Microengineering, 19, 094013

Humble et Harb, 2003, Optimization of Nickel-Zinc Microbatteries for Hybrid Powered Microsensor Systems, Journal of The Electrochemical Society, 150, A1182 [doi:10.1149/1.1595657]

Jones et Akridge, 1992, A thin film solid state microbattery, Solid State Ionics, 53-56, 628-634 [doi:10.1016/0167-2738(92)90439-V]

Kamitani, Morishita, Kotaki et Arscott, 2011, Microfabricated microfluidic fuel cells, Sensors and Actuators B: Chemical, 154, 174-180 [doi:10.1016/j.snb.2009.11.014]

Kim, Choi, Cho, Choi, Park et Lee, 2015, Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics, Nano Letters, 15, 5168-5177 [doi:10.1021/acs.nanolett.5b01394]

Knoops, Donders, Baggetto, Van de Sanden, Notten et Kessels, 2009, Atomic Layer Deposition for All-Solid-State 3D-Integrated Batteries, ECS Transactions, 25 (4) 333-344 [doi:10.1149/1.3205068]

Kutbee, Ghoneim, Ahmad et Hussain, 2016, Free-Form Flexible Lithium-Ion Microbattery, IEEE Transactions on Nanotechnology, 15, 402-408 [doi:10.1109/TNANO.2016.2537338]

Laptev, Malede, Duan, Mücke, Danilov, Notten et Guillon, 2017, Modeling large patterned deflection during lithiation of micro-structured silicon, Extreme Mechanics Letters [doi:10.1016/j.eml.2017.05.001]

Lee et Kim, 2012, Micro PEM fuel cell system with NaBH4 hydrogen generator, Sensors and Actuators A: Physical, 177, 54-59 [doi:10.1016/j.sna.2011.08.004]

Lee et Kim, 2014, Micro space power system using MEMS fuel cell for nano-satellites, Acta Astronautica, 101, 165-169 [doi:10.1016/j.actaastro.2014.04.010] (lee2014_2)

Létiche, 2016, Élaboration de matériaux pour microbatterie 3D Li-ion par dépôt de couches atomiques (ALD) et caractérisations structurales operando, Université de Lille 1

Marquardt, Hahn, Luger et Reichl, 2006, Assembly and Hermetic Encapsulation of Wafer Level Secondary Batteries, MEMS 2006, 954-957 [doi:10.1109/MEMSYS.2006.1627959]

Nam, Wartena, Yoo, Liau, Lee, Chiang, Hammond et Belcher, 2008, Stamped microbattery electrodes based on self-assembled M13 viruses, Proceedings of the National Academy of Sciences, 105, 17227-17231 [doi:10.1073/pnas.0711620105]

Nanjundiah, McDevitt et Koch, 1997, Differential Capacitance Measurements in Solvent-Free Ionic Liquids at Hg and C Interfaces, Journal of The Electrochemical Society, 144, 3392 [doi:10.1149/1.1838024]

Nathan, Peled et Haronian, 2001, Micro electrochemical energy storage cells, US 6197450

Ning, Pikul, Zhan, Li, Xu, Wang, Rogers, King et Braun, 2015, Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries, Proceedings of the National Academy of Sciences, 112, 6573-6578 [doi:10.1073/pnas.1423889112]

Nitta, Wu, Lee et Yushin, 2015, Li-ion battery materials: present and future, Materials Today, 18, 252-264 [doi:10.1016/j.mattod.2014.10.040]

Oltean, Asfaw, Nyholm et Edström, 2014, A Li-Ion Microbattery with 3D Electrodes of Different Geometries, ECS Electrochemistry Letters, 3, A54-A57 [doi:10.1149/2.003406eel]

Porthault, Le Cras, Duffault et Franger, 2016, Fast deposition of conformal LiCoO2 thin film electrodes for high capacity 3D batteries, Materials Science and Engineering: B, 213, 163-168 [doi:10.1016/j.mseb.2016.05.001]

Ranganathan, McCreery, Majji et Madou, 2000, Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications, Journal of The Electrochemical Society, 147, 277 [doi:10.1149/1.1393188]

Roberts, Johns, Owen, Brandell, Edstrom, El Enany, Guery, Golodnitsky, Lacey, Lecoeur, Mazor, Peled, Perre, Shaijumon, Simon et Taberna, 2011, 3D lithium ion batteries—from fundamentals to fabrication, Journal of Materials Chemistry, 21, 9876 [doi:10.1039/c0jm04396f]

Salot, Martin, Oukassi, Bedjaoui et Ubrig, 2009, Microbattery technology overview and associated multilayer encapsulation process, Applied Surface Science, 256, S54-S57 [doi:10.1016/j.apsusc.2009.09.086]

Saputra, Othman, Sutjipto, Muhida et Ani, 2012, Solid state, dry zinc/MCM-41/air cell as relative humidity sensor, Journal of Membrane Science, 415-416, 237-241 [doi:10.1016/j.memsci.2012.05.004]

Shul, Kravitz, Christenson, Zipperian et Ingersoll, 2002, Apparatus and method for fabricating a microbattery, US 6432577

Tsang, Armutlulu, Martinez, Bidstrup Allen et Allen, 2015, Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices, Microsystems & Nanoengineering, 1 [doi:10.1038/micronano.2015.24]

Wang, Chen, Winslow, Madan, Juang, Nill, Evans et Wright, 2012, Integration of dispenser-printed ultra-low-voltage thermoelectric and energy storage devices, Journal of Micromechanics and Microengineering, 22, 094001 [doi:10.1088/0960-1317/22/9/094001]

Wen, Hu, Luo, Li et Cheng, 2015, Open-pore LiFePO4/C microspheres with high volumetric energy density for lithium ion batteries, Particuology, 22, 24-29 [doi:10.1016/j.partic.2014.11.002]

_Bosch process and silicon etching

Addae-Mensah, Retterer, Opalenik, Thomas, Lavrik et Wikswo, 2009, Cryogenic Etching of Silicon: An Alternative Method for Fabrication of Vertical Microcantilever Master Molds, Journal of Microelectromechanical Systems, 19, 64-74 [doi:10.1109/JMEMS.2009.2037440]

AZoNano (blog), 2011, Comparison of the Bosch and a Cryogenically Cooled Deep Silicon Etch Processes [url:http://www.azonano.com/article.aspx?ArticleID=2951]

Mellhaoui, 2006, Physico-chemical mechanisms involved in the silicon plasma etching cryogenic process, Université d'Orléans

_processes

Leskelä et Ritala, 2002, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, 409, 138-146 [doi:10.1016/S0040-6090(02)00117-7]

Macdonald, 1992, Impedance spectroscopy, Annals of Biomedical Engineering, 20, 289-305 [doi:10.1007/BF02368532]

Malygin, Drozd, Malkov et Smirnov, 2015, From V. B. Aleskovskii’s “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition, Chemical Vapor Deposition, 21, 216-240 [doi:10.1002/cvde.201502013]

Marschewski, Brenner, Ebejer, Ruch, Michel et Poulikakos, 2017, 3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries, Energy Environ. Sci., 10, 780-787 [doi:10.1039/C6EE03192G]

Puurunen, 2005, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, 97, 121301 [doi:10.1063/1.1940727]

_smartdusts

Fojtik, Kim, Chen, Lin, Fick, Park, Seok, Chen, Foo, Blaauw et Sylvester, 2013, A Millimeter-Scale Energy-Autonomous Sensor System With Stacked Battery and Solar Cells, IEEE Journal of Solid-State Circuits, 48, 801-813 [doi:10.1109/JSSC.2012.2233352]

Ghaed, Chen, Haque, Wieckowski, Kim, Kim, Lee, Lee, Fick, Kim, Seok, Wise, Blaauw et Sylvester, 2013, Circuits for a Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor, IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 3152-3162 [doi:10.1109/TCSI.2013.2265973]

Hsu, Kahn et Pister, 1998, Wireless communications for smart dust, University of California [url:http://robotics.eecs.berkeley.edu/~pister/publications/1998/smartdust_comm_memo[1].pdf]

Jeong, Foo, Lee, Sim, Blaauw et Sylvester, 2014, A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes, IEEE Journal of Solid-State Circuits, 49, 1682-1693 [doi:10.1109/JSSC.2014.2325574]

Koeneman, Busch-Vishniac et Wood, 1997, Feasibility of micro power supplies for MEMS, Journal of Microelectromechanical Systems, 6, 355-362 [doi:10.1109/84.650133]

Lhermet, Condemine, Plissonnier, Salot, Audebert et Rosset, 2008, Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage, IEEE Journal of Solid-State Circuits, 43, 246-255 [doi:10.1109/JSSC.2007.914725]

Miller, 2012, Valuing Reversible Energy Storage, Science, 335, 1312-1313 [doi:10.1126/science.1219134]

Pistoai, 2006, Batteries for portable devices, Elsevier [ISBN:978-0-444-51672-5]

Rasouli et Phee, 2010, Energy sources and their development for application in medical devices, Expert Review of Medical Devices, 7, 693-709 [doi:10.1586/erd.10.20]

Renaud, Altena, Goedbloed, de Nooijer, Matova, Naito, Yamakawa, Takeuchi, Onishi et van Schaijk, 2013, A high performance electrostatic MEMS vibration energy harvester with corrugated inorganic SiO2-Si3N4, Transducers 2013 IEEE, 693-696 [doi:10.1109/Transducers.2013.6626861]

Wang et Wu, 2012, Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems, Angewandte Chemie International Edition, 51, 11700-11721 [doi:10.1002/anie.201201656]

Warneke, Last, Liebowitz et Pister, 2001, Smart Dust: communicating with a cubic-millimeter computer, Computer, 34, 44-51 [doi:10.1109/2.895117]

_supercapacitors

Brachet, 2015, Micro-supercondensateurs tout solides à électrolyte ionogel, Université de Nantes

Brousse, Bélanger et Long, 2015, To Be or Not To Be Pseudocapacitive?, Journal of the Electrochemical Society, 162, A5185-A5189 [doi:10.1149/2.0201505jes]

Choudhary, Li, Chung, Moore, Thomas et Jung, 2016, High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers, ACS Nano, 10, 10726-10735 [doi:10.1021/acsnano.6b06111]

El Kady et Kaner, 2013, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nature Communications, 4, 1475 [doi:10.1038/ncomms2446]

Huang, Lethien, Pinaud, Brousse, Laloo, Turq, Respaud, Demortière, Daffos, Taberna, Chaudret, Gogotsi et Simon, 2016, On-chip and freestanding elastic carbon films for micro-supercapacitors, Science, 351, 691-695 [doi:10.1126/science.aad3345]

Le Thai, Chandran, Dutta, Li et Penner, 2016, 100k Cycles and Beyond: Extraordinary Cycle Stability for MnO2 Nanowires Imparted by a Gel Electrolyte, ACS Energy Letters, 1, 57-63 [doi:10.1021/acsenergylett.6b00029]